Crate hacspec_halo2

source ·
Expand description

Protocol

Let ωF\omega \in \field be a n=2kn = 2^k primitive root of unity forming the domain D=(ω0,ω1,,ωn1)D = (\omega^0, \omega^1, …, \omega^{n - 1}) with t(X)=Xn1t(X) = X^n - 1 the vanishing polynomial over this domain. Let ng,na,nen_g, n_a, n_e be positive integers with na,ne<nn_a, n_e \lt n and ng4n_g \geq 4. We present an interactive argument Halo=(Setup,P,V)\halo = (\setup, \prover, \verifier) for the relation

R={((g(X,C0,,Cna1,a0(X),,ana1(X,C0,,Cna1,a0(X),,ana2(X)))); (a0(X),a1(X,C0,a0(X)),,ana1(X,C0,,Cna1,a0(X),,ana2(X)))):  g(ωi, )=0,,,,i[0,2k)} \relation = \left\{ \begin{array}{ll} &\left( \begin{array}{ll} \left( g(X, C_0, …, C_{n_a - 1}, a_0(X), …, a_{n_a - 1}\left(X, C_0, …, C_{n_a - 1}, a_0(X), …, a_{n_a - 2}(X) \right)) \right); \ \left( a_0(X), a_1(X, C_0, a_0(X)), …, a_{n_a - 1}\left(X, C_0, …, C_{n_a - 1}, a_0(X), …, a_{n_a - 2}(X) \right) \right) \end{array} \right) : \ \ & g(\omega^i, \cdots) = 0 , , , , \forall i \in [0, 2^k) \end{array} \right\}

where a0,a1,,ana1a_0, a_1, …, a_{n_a - 1} are (multivariate) polynomials with degree n1n - 1 in XX and gg has degree ng(n1)n_g(n - 1) at most in any indeterminates X,C0,C1,X, C_0, C_1, ….

Setup(λ)\setup(\sec) returns pp=(G,F,GGn,U,WG)\pp = (\group, \field, \mathbf{G} \in \group^n, U, W \in \group).

For all i[0,na)i \in [0, n_a):

  • Let pi\mathbf{p_i} be the exhaustive set of integers jj (modulo nn) such that ai(ωjX, )a_i(\omega^j X, \cdots) appears as a term in g(X, )g(X, \cdots).
  • Let q\mathbf{q} be a list of distinct sets of integers containing pi\mathbf{p_i} and the set q0=0\mathbf{q_0} = {0}.
  • Let σ(i)=qj\sigma(i) = \mathbf{q}_j when qj=pi\mathbf{q}_j = \mathbf{p_i}.

Let nqnan_q \leq n_a denote the size of q\mathbf{q}, and let nen_e denote the size of every pi\mathbf{p_i} without loss of generality.

In the following protocol, we take it for granted that each polynomial ai(X, )a_i(X, \cdots) is defined such that ne+1n_e + 1 blinding factors are freshly sampled by the prover and are each present as an evaluation of ai(X, )a_i(X, \cdots) over the domain DD. In all of the following, the verifier’s challenges cannot be zero or an element in DD, and some additional limitations are placed on specific challenges as well.

StepSpecImpl.ProtocolNotes
1NA?P\prover and V\verifier proceed in the following nan_a rounds of interaction, where in round jj (starting at 00)
* P\prover sets aj(X)=aj(X,c0,c1,,cj1,a0(X, ),,aj1(X, ,cj1))a^\prime_j(X) = a_j(X, c_0, c_1, …, c_{j - 1}, a_0(X, \cdots), …, a_{j - 1}(X, \cdots, c_{j - 1}))
* P\prover sends a hiding commitment Aj=a,G+[]WA_j = \innerprod{\mathbf{a^\prime}}{\mathbf{G}} + [\cdot] W where a\mathbf{a^\prime} are the coefficients of the univariate polynomial aj(X)a^\prime_j(X) and \cdot is some random, independently sampled blinding factor elided for exposition. (This elision notation is used throughout this protocol description to simplify exposition.)We denote the blinding \cdot used in round jj as aja^* _j
* V\verifier responds with a challenge cjc_j.
2NA?P\prover sets g(X)=g(X,c0,c1,,cna1, )g^\prime(X) = g(X, c_0, c_1, …, c_{n_a - 1}, \cdots).
3NAlinkP\prover sends a commitment R=r,G+[]WR = \innerprod{\mathbf{r}}{\mathbf{G}} + [\cdot] W where rFn\mathbf{r} \in \field^n are the coefficients of a randomly sampled univariate polynomial r(X)r(X) of degree n1n - 1.We denote the blinding \cdot used as rr^*
4step_4linkP\prover computes univariate polynomial h(X)=g(X)t(X)h(X) = \frac{g^\prime(X)}{t(X)} of degree ng(n1)nn_g(n - 1) - n.
5step_5linkP\prover computes at most n1n - 1 degree polynomials h0(X),h1(X),,hng2(X)h_0(X), h_1(X), …, h_{n_g - 2}(X) such that h(X)=i=0ng2Xnihi(X)h(X) = \sum\limits_{i=0}^{n_g - 2} X^{ni} h_i(X).
6step_6linkP\prover sends commitments Hi=hi,G+[]WH_i = \innerprod{\mathbf{h_i}}{\mathbf{G}} + [\cdot] W for all ii where hi\mathbf{h_i} denotes the vector of coefficients for hi(X)h_i(X).We denote the blinding \cdot used in round jj as hjh^* _j
7step_7link(?)V\verifier responds with challenge xx and computes H=i=0ng2[xni]HiH^\prime = \sum\limits_{i=0}^{n_g - 2} [x^{ni}] H_i.
8step_8linkP\prover sets h(X)=i=0ng2xnihi(X)h^\prime(X) = \sum\limits_{i=0}^{n_g - 2} x^{ni} h_i(X).P\prover sets h=i=0ng2xnihih^{\prime *} = \sum\limits_{i=0}^{n_g - 2} x^{ni} h_i^*.
9step_9linkP\prover sends r=r(x)r = r(x) and for all i[0,na)i \in [0, n_a) sends ai\mathbf{a_i} such that (ai)j=ai(ω(pi)jx)(\mathbf{a_i})_j = a^\prime_i(\omega^{(\mathbf{p_i})_j} x) for all j[0,ne1]j \in [0, n_e - 1].
10step_10link(?)For all i[0,na)i \in [0, n_a) P\prover and V\verifier set si(X)s_i(X) to be the lowest degree univariate polynomial defined such that si(ω(pi)jx)=(ai)js_i(\omega^{(\mathbf{p_i})_j} x) = (\mathbf{a_i})_j for all j[0,ne1)j \in [0, n_e - 1).
11step_11linkV\verifier responds with challenges x1,x2x_1, x_2 and initializes Q0,Q1,,Qnq1=OQ_0, Q_1, …, Q_{n_q - 1} = \zero.
* Starting at i=0i=0 and ending at na1n_a - 1 V\verifier sets Qσ(i):=[x1]Qσ(i)+AiQ_{\sigma(i)} := [x_1] Q_{\sigma(i)} + A_i.
* V\verifier finally sets Q0:=[x12]Q0+[x1]H+RQ_0 := [x_1^2] Q_0 + [x_1] H^\prime + R.
12step_12linkP\prover initializes q0(X),q1(X),,qnq1(X)=0q_0(X), q_1(X), …, q_{n_q - 1}(X) = 0.P\prover initializes q0,q1,,qnq1=0q^*_0, q^*_1, …, q^* _{n_q-1} = 0.
* Starting at i=0i=0 and ending at na1n_a - 1 P\prover sets qσ(i):=x1qσ(i)+a(X)q_{\sigma(i)} := x_1 q_{\sigma(i)} + a^\prime(X).Starting at i=0i=0 and ending at na1n_a - 1 P\prover sets qσ(i):=x1qσ(i)+aiq^* _{\sigma(i)} := x_1 q^* _{\sigma(i)} + a^*_i.
* P\prover finally sets q0(X):=x12q0(X)+x1h(X)+r(X)q_0(X) := x_1^2 q_0(X) + x_1 h^\prime(X) + r(X).P\prover finally sets q0:=x12q0+x1h+rq^* _{0} := x_1^2 q^* _{0} + x_1 h^{\prime *} + r^*
13step_13?P\prover and V\verifier initialize r0(X),r1(X),,rnq1(X)=0r_0(X), r_1(X), …, r_{n_q - 1}(X) = 0.
* Starting at i=0i = 0 and ending at na1n_a - 1 P\prover and V\verifier set rσ(i)(X):=x1rσ(i)(X)+si(X)r_{\sigma(i)}(X) := x_1 r_{\sigma(i)}(X) + s_i(X).
* Finally P\prover and V\verifier set r0:=x12r0+x1h+rr_0 := x_1^2 r_0 + x_1 h + r and where hh is computed by V\verifier as g(x)t(x)\frac{g^\prime(x)}{t(x)} using the values r,ar, \mathbf{a} provided by P\prover.
14step_14linkP\prover sends Q=q,G+[]WQ^\prime = \innerprod{\mathbf{q^\prime}}{\mathbf{G}} + [\cdot] W where q\mathbf{q^\prime} defines the coefficients of the polynomial q(X)=i=0nq1x2nq1i(qi(X)ri(X)j=0ne1(Xω(qi)jx))q^\prime(X) = \sum\limits_{i=0}^{n_q - 1} x_2^{n_q-1-i} \left( \frac {q_i(X) - r_i(X)} {\prod\limits_{j=0}^{n_e - 1} \left( X - \omega^{\left( \mathbf{q_i} \right)_j} x \right) } \right) The blinding \cdot used here is denoted as qq^{\prime *}.
15step_15linkV\verifier responds with challenge x3x_3.
16step_16linkP\prover sends uFnq\mathbf{u} \in \field^{n_q} such that ui=qi(x3)\mathbf{u}_i = q_i(x_3) for all i[0,nq)i \in [0, n_q).
17step_17linkV\verifier responds with challenge x4x_4.
18step_18linkV\verifier sets P=[x4nq]Q+i=0nq1[x4nq1i]QiP = [x_4^{n_q}]Q’ + \sum\limits_{i=0}^{n_q - 1} [x_4^{n_q - 1 - i}] Q_i and v=x4nqi=0nq1(x2nq1i(uiri(x3) j=0ne1(x3ω(qi)jx)))+ i=0nq1x4nq1iuiv = x_4^{n_q} \cdot \sum_{i=0}^{n_q - 1} \left(x_2^{n_q - 1 - i} \left(\frac{\mathbf{u}_i - r_i(x_3)}{\prod\ _{j=0}^{n_e - 1}(x_3 - \omega^{(\mathbf{q}_i)_j}x)}\right)\right) + \sum\ _{i=0}^{n_q - 1} x_4^{n_q - 1 - i} \mathbf{u}_i
19step_19linkP\prover sets p(X)=x4nqq(X)+i=0nq1x4nq1iqi(X)p(X) = x_4^{n_q} \cdot q’(X) + \sum\limits_{i=0}^{n_q - 1} x_4^{n_q - 1 - i} \cdot q_i(X).P\prover sets p=x4nqq+i=0nq1x4nq1iqip^* = x_4^{n_q} \cdot q’^* + \sum\limits_{i=0}^{n_q - 1} x_4^{n_q - 1 - i} \cdot q^*_i.
20step_20linkP\prover samples a random polynomial s(X)s(X) of degree n1n - 1 with a root at x3x_3 and sends a commitment S=s,G+[]WS = \innerprod{\mathbf{s}}{\mathbf{G}} + [\cdot] W where s\mathbf{s} defines the coefficients of s(X)s(X).The blinding \cdot used here is denoted as ss^{*}.
21step_21linkV\verifier responds with challenges ξ,z\xi, z.
22step_22linkV\verifier sets P=P[v]G0+[ξ]SP^\prime = P - [v] \mathbf{G}_0 + [\xi] S.
23step_23linkP\prover sets p(X)=p(X)p(x3)+ξs(X)p^\prime(X) = p(X) - p(x_3) + \xi s(X) (where p(x3)p(x_3) should correspond with the verifier’s computed value vv).P\prover sets p=sξ+pp^{\prime *} = s^* \cdot \xi + p^*
24step_24linkInitialize p\mathbf{p^\prime} as the coefficients of p(X)p^\prime(X) and G=G\mathbf{G^\prime} = \mathbf{G} and b=(x30,x31,,x3n1)\mathbf{b} = (x_3^0, x_3^1, …, x_3^{n - 1}). P\prover and V\verifier will interact in the following kk rounds, where in the jjth round starting in round j=0j=0 and ending in round j=k1j=k-1 :
* P\prover sends Lj=phi,Glo+[zphi,blo]U+[]WL_j = \innerprod{\mathbf{p^\prime}\hi}{\mathbf{G^\prime}\lo} + [z \innerprod{\mathbf{p^\prime}\hi}{\mathbf{b}\lo}] U + [\cdot] W and Rj=plo,Ghi+[zplo,bhi]U+[]WR_j = \innerprod{\mathbf{p^\prime}\lo}{\mathbf{G^\prime}\hi} + [z \innerprod{\mathbf{p^\prime}\lo}{\mathbf{b}\hi}] U + [\cdot] W.The blinding \cdot used for LjL_j is denoted LjL_j^* and the blinding used for RjR_j is denoted RjR_j^*
* V\verifier responds with challenge uju_j chosen such that 1+uk1jx32j1 + u_{k-1-j} x_3^{2^j} is nonzero.
* P\prover and V\verifier set G:=Glo+ujGhi\mathbf{G^\prime} := \mathbf{G^\prime}\lo + u_j \mathbf{G^\prime}\hi and b:=blo+ujbhi\mathbf{b} := \mathbf{b}\lo + u_j \mathbf{b}\hi.
* P\prover sets p:=plo+uj1phi\mathbf{p^\prime} := \mathbf{p^\prime}\lo + u_j^{-1} \mathbf{p^\prime}\hi.
25step_25linkP\prover sends c=p0c = \mathbf{p^\prime}_0 and synthetic blinding factor ff computed from the elided blinding factors.P\prover sets f=p+j=0k1Ljuj1+rjujf = p^{\prime *} + \sum_{j=0}^{k - 1}L_j^* \cdot u_j^{-1}+r_j^* \cdot u_j
26step_26linkV\verifier accepts only if j=0k1[uj1]Lj+P+j=0k1[uj]Rj=[c]G0+[cb0z]U+[f]W\sum_{j=0}^{k - 1} [u_j^{-1}] L_j + P^\prime + \sum_{j=0}^{k - 1} [u_j] R_j = [c] \mathbf{G^\prime}_0 + [c \mathbf{b}_0 z] U + [f] W.

Functions

Add two polynomials, return resulting polynomial
Add a scalar (constant) from a polynomial, return resulting polynomial
Auxilary function for computing L_j or R_j in step 24
Checks if all entries in a polynomial is 0
Pedersen vector commitment
Compute vanishing polynomial over n-order multiplicative subgroup H with root of unity omega
Get the degree of a polynomial
divide the leading terms of two polynomials, returning a single term (e.g. 5x^3) represented as a polynomial (helper function for divide_poly)
Perform polynomial long division, returning the quotient and the remainder. The algorithm is from https://en.wikipedia.org/wiki/Polynomial_long_division.
Evaluate a polynomial at point, return the evaluation
Inner product, between to equal length vectors of field elements
Finds the Lagrange basis for a set of points and a single evaluation point x This will produce a polynomial that evaluates to 1 at xand to 0 at all other x-values in the set points No other guarentees are given about the resulting polynomial
Find lowest degree polynomial passing through a set points using legrange interpolation
msm 🔒
Multiscalar multiplicatoin, auxiliary function for Pedersen vector commitment
Polynomial multiplication using sparse multiplication. This can be more efficient than operand scanning but also prone to side-channel attacks. Mostly copied from hacspec’s poly_mul
Multiply a polynomial by a scalar, return resulting polynomial
Wrapper function for multiplying a polynomial with the indeterminate
Wrapper function for multiplying a polynomial with the indeterminate multiple times
Rotate a polynomial
sigma 🔒
Implementation of the σ mapping from the protocol
step_4 🔒
Step 4 Beginning of the vanishing argument
step_5 🔒
Step 5 split polynomial of degree n_g(n-1)-n up into n_(g-2) polynomials of degree at most n-1
step_6 🔒
Step 6 commit to each h_i polynomial keeping them in the seq to peserve the power (i)
step_7 🔒
Step 7 Computes the sum from step 7 in the protocol description
step_8 🔒
Step 8 This functions calculates h’(X) from the h_i parts created in step 5 and the challenge x
step_9 🔒
Step 9 This functions returns r(x) and creates a seq filled with a_i from the second part of step 9
step_10 🔒
Step 10 This function initializes the s sequence of length n_a and fills it with polynomials of degree n_e-1 made with legrange interpolation
step_11 🔒
Step 11 Get the list of Q’s (Q_0, …, Q_{n_q - 1})
step_12 🔒
Step 12 Get the list of q’s (q_0, …, q_{n_q - 1}) and q_blinds (accumulated blindness)
step_13 🔒
Step 13 Get the list of r’s (r_0, …, r_{n_q - 1})
step_14 🔒
Step 14 Get the commitment Q’, poly q’ and the blindness used
step_15 🔒
Step 15 This function emulates sending a challenge.
step_16 🔒
Step 16 Get the u ∈ F^{n_q} vector
step_17 🔒
Step 17 This function emulates sending a challenge.
step_18 🔒
Step 18 Get P and the v
step_19 🔒
Step 19 Get the p(X) polynomial
step_20 🔒
Step 20 Get the commitment S and the blindness used
step_21 🔒
Step 21 Get the xi and z challenges. They have to be fed into hacspec, since there is no randomness.
step_22 🔒
Step 22 Get the P’ curve-point/group-element
step_23 🔒
Step 23 Get the p’(X) polynomial and p’ blindness
step_24 🔒
Step 24 Get G‘, p’, b, L, R, and {L,R} blinds
step_25 🔒
Step 25 Get the zeroth entry in p and synthetic blinding factor f
step_26 🔒
Step 26 Verifiers final check of the protocol
Subtract two polynomials, return resulting polynomial
Subtract a scalar (constant) from a polynomial, return resulting polynomial
Trim a polynomial of trailing zeros (zero-terms) and return it

Type Definitions

CRS 🔒
Common Reference Struct
A polynomial represented by its coefficient form, such that index i is the i’th term